

The bioCRACK Process – a refinery integrated BtL-concept

BIOFIT Progress Meeting – day 2

Edgar Ahn, BDI-Holding GmbH

BDI at a glance

- Austrian based, highly specialized plant engineering and construction company
- Tailor-made, turn-key EPC-solutions
- Industrial BioDiesel- & BtL-Multi-Feedstock Technology
- 20 years of experience with
 >40 reference plants world-wide
- Key Figures:
 - Staff: 120 employees
 - Turnover: 30 40 Mio.€

bioCRACK – Motivation

- Growing renewable energy share in transport sector
 mandatory mandates for biofuel portion in RED II post-2020
- Strong request for 2nd generation biofuels
 no "food versus fuel" in biofuels
- Continuous development of Benchmark-Technologies for Biofuel production at BDI
- Conversion of biogenic waste & residues from "non-food" areas into high-quality Biofuel Bokonce

develep.design.build

BDICT

WÄSSRIGE

PHASE

bioCRACK – Project goals

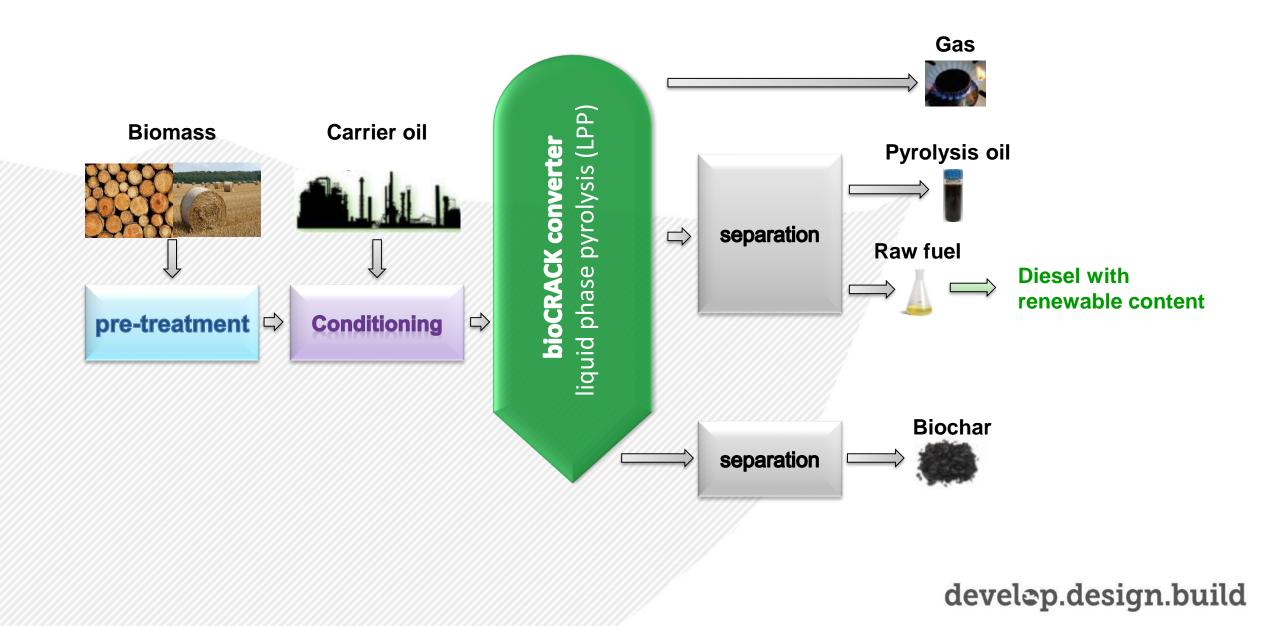
- Simple process technology
- Compliance with current fuel quality standards in final fuel product
- Useable side-products, <u>no</u> waste streams
- Fit in with conventional process of mineral oil refining
- Liquid phase pyrolysis (liquefaction of solid biomass)
- Co-processing of intermediate product in refinery (heavy ends) and solid biomass

bioCRACK – Feedstock

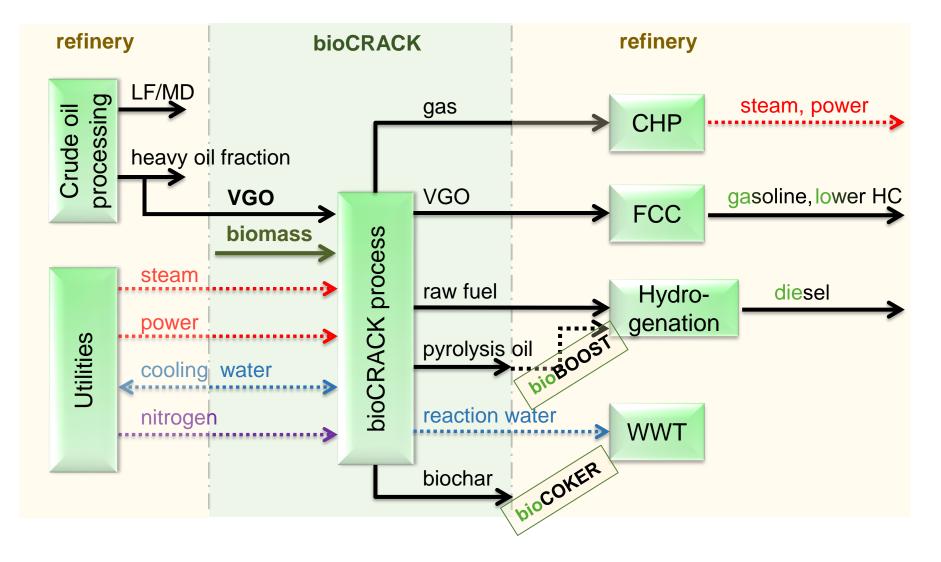
Ideal biomass for bioCRACK is renewable lignocelluloses

- Low water content
- Low nitrogen, chlorine, toxics
- Fine particle size (<5mm) possible

Examples:


- Wood chips (soft and hard wood)
- Forestry residues
- Chopped straw/agricultural residue ...

Biomass contains up to 50% oxygen in complex molecular structure. Oxygen is unwanted element in liquid fuels and has to be removed to reach requested fuel quality!

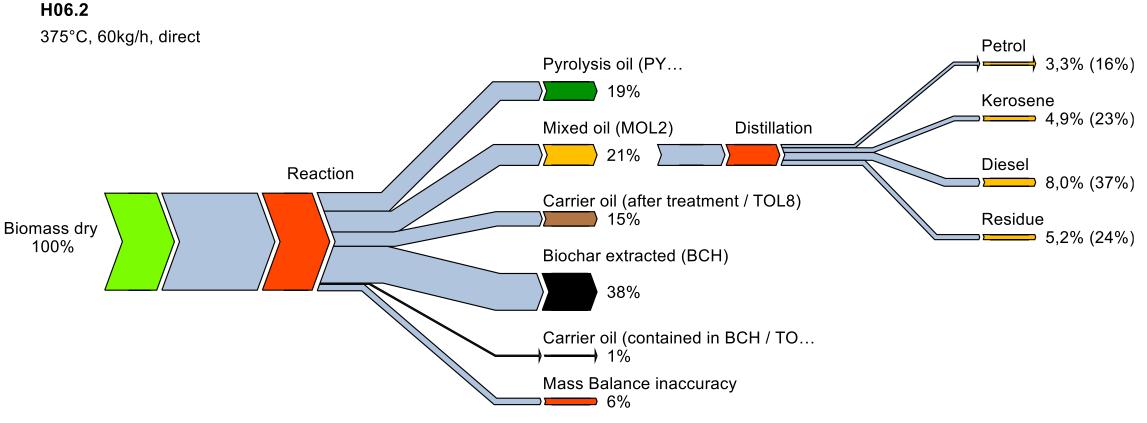

bioCRACK – basic Process scheme

bioCRACK – Refinery Integration

bioCRACK – Pilot plant (2013 - 2015)

Integrated pilot plant at the OMV refinery Schwechat/Austria (1.000 to BM/y)

Upgrading of raw diesel to EN590 quality is possible

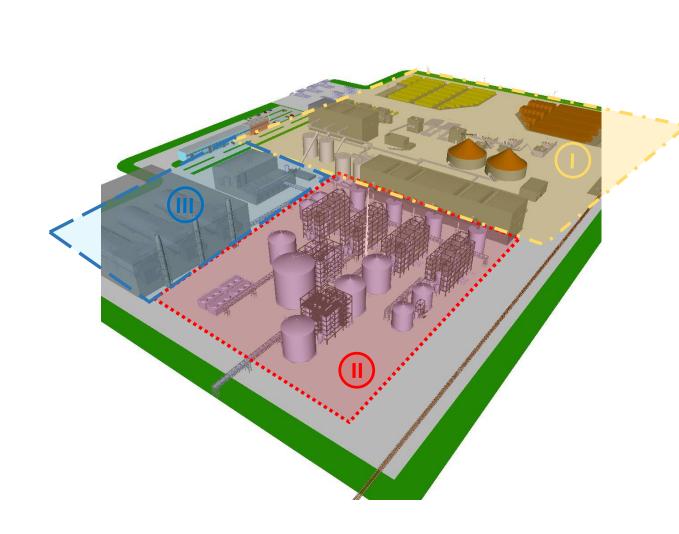

Parameter	Untreated raw diesel	After hydro treatment	EN 590
Density (15°C)	868 kg/m³	833 kg/m³	820 - 845 kg/m³
Viscosity (40°C)	2,53 mm²/s	n.a.	2 - 4,5 mm²/s
Cetan	44	53	> 51
C/H/O	85/13/2 wt.%	86/14/0 wt.%	n.a.
Volatile <350°C	83 wt.%	86 wt.%	> 85 % (v/v)
Sulfur	177 mg/kg	3 mg/kg	< 10 mg/kg

Example integration bioCRACK in OMV refinery concept:

- general increase of fuel production from VGO by + 5%
- Shift in fuel distribution from petrol (-11%) to diesel (+25%) and kerosene (+15%)

Detailed C_{14} Balance \rightarrow Biocarbon transfer

Results from bioCRACK pilot plant Schwechat Feedstock: spruce


GHG-Saving potential (accord. to RED) Comparison to other biofuels in Austria

bioCRACK – Industrial scale-layout

 Capacity: 400.000 to/y BM → 60.000 to/y biofuels; Total Area: 235.000m²

Area I:

Multi-Feedstock biomass preparation

Area II:

bioCrack Refining 1- 4, product treatment VGO-Conditioning

- Area III: Energy central station, bioChar treatment
- Estimated Capex 400.000 t
 p.a. biomass: 200 300 Mio €

bio CRACK		LIQUID PHASE PYROLYSIS OIL		
Biomass Liquid Phase Pyrolysis	Gas BioOil bioCRACK BioChar	Water content	[wt.%]	57.0%
		LHV	[MJ/kg]	7.4
		Density	[kg/m³]	1092
		Viscosity	[mPa⋅s]	3.5
		Carbon content	[wt.%]	22.3
		Hydrogen content	[wt.%]	9.4
		Rest	[wt.%]	67.8
		Nitrogen content	[wt.%]	<1
bioCRACK		Biogenic Carbon	[wt.%]	100%

bioCRACK – Pyrolysis oil

Brown liquid with a few hundred compounds

- Low pH
- High water content
- High corrosivity
- High viscosity
- Low stability (polymerisation reactions)
- Smoky smell

Differences to fast pyrolysis oil:

- Lower molecular size distribution (< 2.000 g/Mol)
- Higher water content
- Lower viscosity

bioBOOST – Possible usage & upgrading techniques

- Material utilization (Extraction of phenols, acetic acid, "liquid smoke",..)
- Electro-chemical upgrading (stabilization)
- Steam reforming
- Gasification & Fischer Tropsch Synthesis (e.g. KIT)
- Usage as fuel additive (emulsions)
- Usage in fuel cells (sugar in pyrolysis oil)

Hydrodeoxygenation (HDO)

<u>Goals:</u>

- Value-adding utilization of side-product "pyrolysis oil" from bioCRACK-process
- Increase biogenic carbon transfer, preferably into fuel ->
 production of additional biogenic portion of fuels from biomass feed
- Using standard Hydrotreating / HydroCracking process parameters

- bioBOOST Results
- Hydro-deoxygenation of pyrolysis oil from bioCRACK Process successful, using low-pressure/-temperature Hydrocracking parameters
- Endproduct complies with fuel specification, depending on boiling range
- In combination with bioCRACK-Process yield increase in production of biogenic fuel portion
- Increase in GHG-saving potential up to 86%
- Concept for Multi-feedstock BiomassPyrolysisRefinery proven

Green Chemistry

PAPER

View Article Online View Journal


Cite this: DOI: 10.1039/c4gc02344g

Hydrocarbon liquid production *via* the bioCRACK process and catalytic hydroprocessing of the product oil

N. Schwaiger, *^{a,c} D. C. Elliott, ^b J. Ritzberger, ^c H. Wang, ^b P. Pucher^c and M. Siebenhofer^a

BiomassPyrolysisRefinery

Summary

bioCRACK-Process:

new, patented BtL-process, as add-on technology to existing mineral oil refinery

- Tested in pilot scale for 2 years (~1.000 t/y biomass)
- Produced raw diesel can be up-graded to EN590-diesel, using standard hydrogenation unit
- Biogenic portion up to 20% (C₁₄ analysis)
- Side-product stream "pyrolysis oil" can also be up-graded with Hydrodeoxygenation units (project "bioBOOST") to biogenic fuel.
- Search for partners/licensee

Thank you for your kind attention.