

## The Alcohol-To-Jet process: A Retrofit for 1G ethanol plants

BIOFIT Final Policy Conference, 19<sup>th</sup> of January 2022 Andrew Hull, Swedish Biofuels



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817999.





2

#### <sup>+</sup> Alcohol to jet – synthetic kerosene with aromatics

<sup>1</sup> Defense Advance Research Projects Agency

during 2016 to 2018 at 50:50 blend with fossil jet fuel – no aromatics

SB leading new ASTM

fuel as ATJ-SKA<sup>+</sup> –

includes aromatics

certification for 100 %

replacement of fossil jet

Stockholm, Sweden ATJ-SPK certified at ASTM

First demonstrated for

DARPA<sup>1</sup> in 2009 by SB in

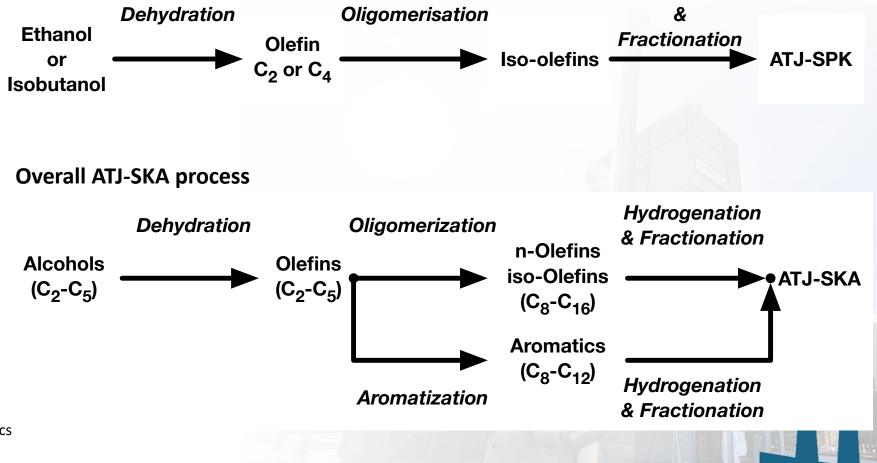
ATJ Process

process was developed

by Swedish Biofuels (SB),

Alcohol To Jet (ATJ)

patent of 2004

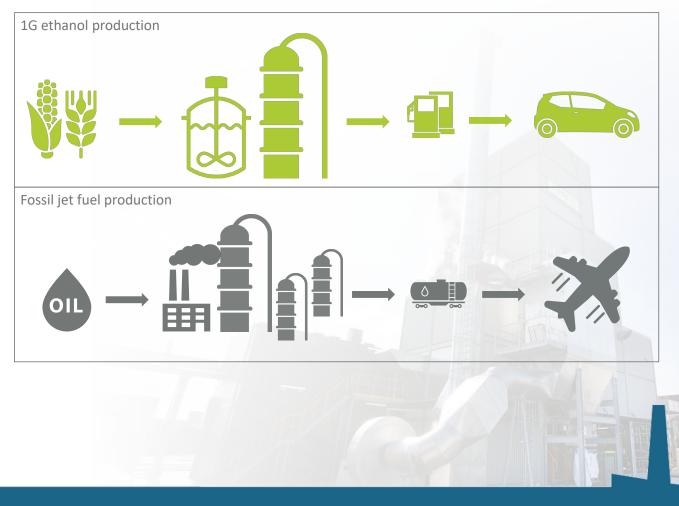

•

•

### **Overall ATJ-SPK process**



**Hydrogenation** 








#### 1G ethanol from grain

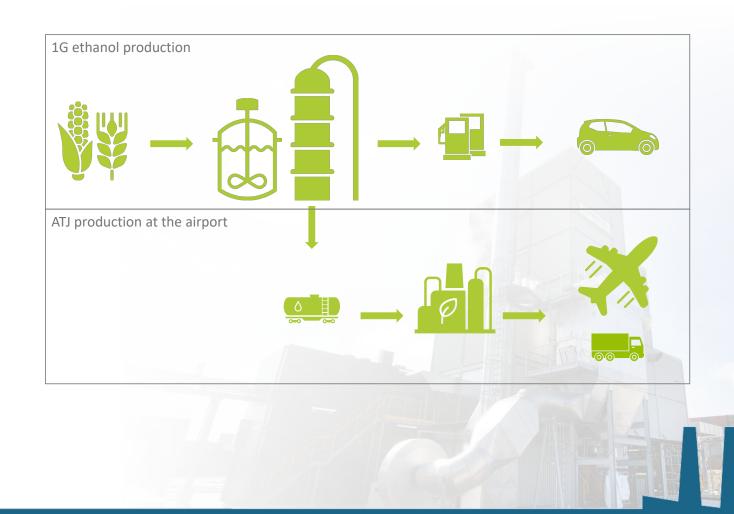
#### Kerosene from crude oil



## • Retrofit scenario

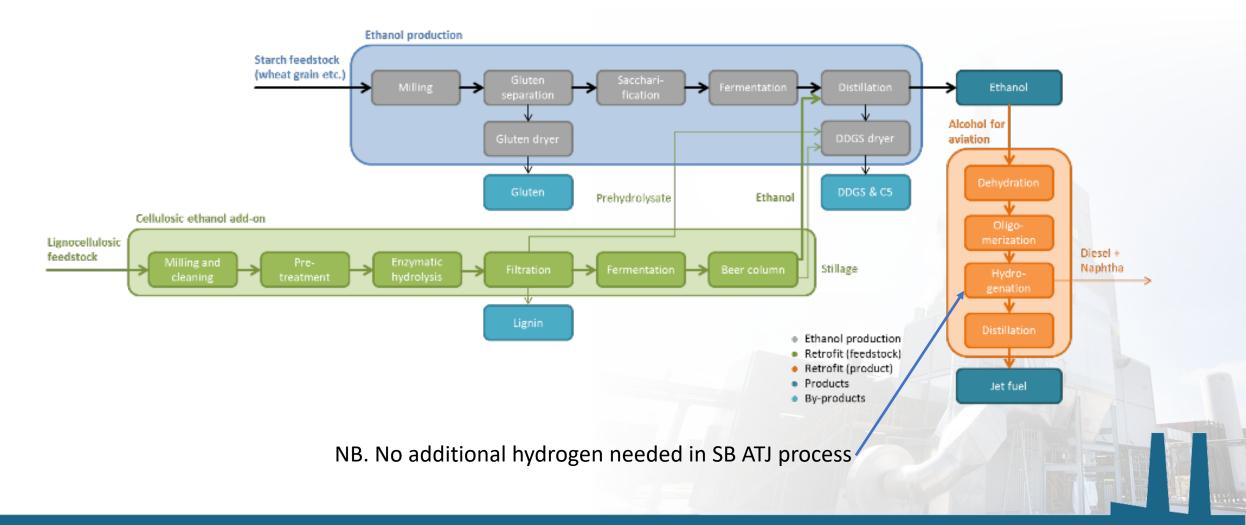


- IG ethanol with integrated alcohol to jet production iggyent for n market on
- 1G ethanol from grain (VERTEX)
- Sustainable aviation fuel using alcohol to jet ATJ) technology from Swedish Biofuels
- Products


SAF (ATJ-SKA) 100 % replacement for fossil jet fuel

Diesel – used locally or sold on market Gasoline – used locally or sold on market

## • Alternative scenario



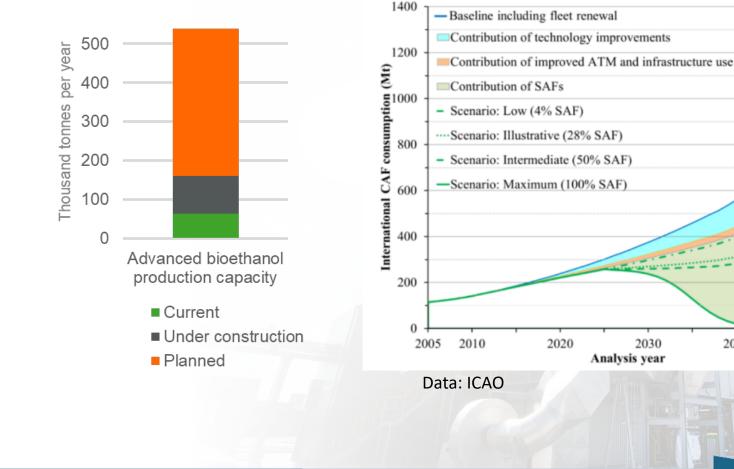

- 1G ethanol from grain
- Transport
- Sustainable aviation fuel using alcohol to jet (ATJ) technology from Swedish Biofuels
- Products
  - SAF (ATJ-SKA) 100 % replacement for fossil jet fuel
  - Diesel used locally or sold on market
  - Gasoline used locally or sold on market



Supply chain






## Market assessment



• Feedstock available

Substantial 1G ethanol production worldwide Large planned increases in advanced bioethanol production capacity in Europe

 Large demand for SAF 100 % replacement of fossil jet fuel needed – also reduces costs



2040

2050

## Techno economic assessment

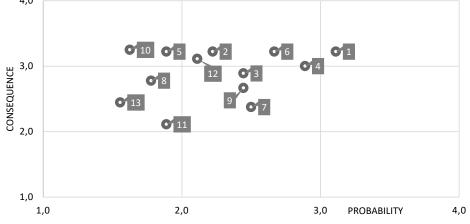
- Main economic result IRR<sup>+</sup> 30 %
- Other considerations

   Volatility of oil market
   Recent increases in SAF price
   Changes in feedstock costs
   Stability of policy framework



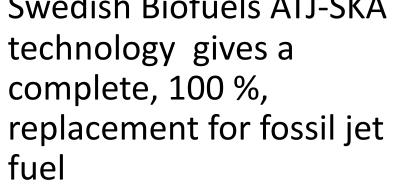


<sup>+</sup> internal rate of return




| Scenario                                                              | Emissions per MJ of fuel<br>(gCO <sub>2eq</sub> /MJ) | Saving compared to REDII (%) |
|-----------------------------------------------------------------------|------------------------------------------------------|------------------------------|
| Baseline Scenario                                                     | 53.26                                                | 43.34                        |
| Current retrofit scenario based on existing 1G bioethanol plant       | 52.23                                                | 44.00                        |
| Sustainable retrofit scenario                                         | 4.93                                                 | 95.00                        |
| Current alternative scenario based<br>on existing 1G bioethanol plant | 53.67                                                | 40.33                        |
| Sustainable alternative scenario                                      | 5.13                                                 | 94.50                        |






| No. | Risk                                                                                                                                                                                 | Probability            | Consequence                 | Total risk |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|------------|
|     |                                                                                                                                                                                      | (1 = low,<br>4 = high) | (1 = little,<br>4 = severe) | (1-16)     |
| 1   | ATJ kerosene is not considered advanced biofuel when<br>utilizing maize-based ethanol, EtOH plant has to undergo 2<br>retrofits, (i) from 1G to advanced fuels, (ii) to ATJ adaption | 3,1                    | 3,2                         | 10,0       |
| 4   | Increasing prices for sustainable feedstock for ethanol production                                                                                                                   | 2,9                    | 3,0                         | 8,7        |
| 6   | Unsupportive or only short-term policies frameworks lead to changes in the market (e.g. green premiums)                                                                              | 2,7                    | 3,2                         | 8,6        |



### Swedish Biofuels ATJ technology is GHG emissions neutral

- Potential to achieve negative carbon emissions by integrating side streams
- Swedish Biofuels ATJ-SKA technology gives a complete, 100 %, replacement for fossil jet fuel



|                                                                                     | Value                    | Value                        |
|-------------------------------------------------------------------------------------|--------------------------|------------------------------|
| КРІ                                                                                 | Current energy<br>supply | Sustainable energy<br>supply |
| Carbon dioxide<br>Equivalent Emission<br>Reduction of supply<br>chain and operation | 44%                      | 95%                          |
| Increased efficiency of resources consumption                                       | Not estimated            | Not estimated                |



11

# Main learning



- Technical economic assessment Revenue much higher than investment
- Market assessment Large demand for SAF and significant increase in advanced bioethanol production, so feedstock availability not a burden
- Sustainability assessment ATJ plant is CO<sub>2</sub> neutral. Renewable energy supplies are important for all stages of production

# Acknowledgements



- Arne Gröngröft DBFZ
- Stephanie Hauschild DBFZ
- Gabriel Costa de Paiva DBFZ
- Doris Matschegg BEST
- Jurjen Spekreijse BTG
- Dimitris Kourkoumpas CERTH
- Angeliki Sagani CERTH
- Vasiliki Tzelepi CERTH
- VERTEX team
- BIOFIT team



# Thank you!

The sole responsibility for the content of this flyer lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the INEA nor the European Commission are responsible for any use that may be made of the information contained therein.



# Q: Integrate or Segregate



- Main considerations relate to
  - Green energy mix
  - Transport distance
- Integrate
  - Utility of side streams e.g. biogenic carbon dioxide capture and use in ATJ-SKA plant can lead to negative carbon emissions
- Standalone
  - Flexibility
- Both work; circumstances dictate