

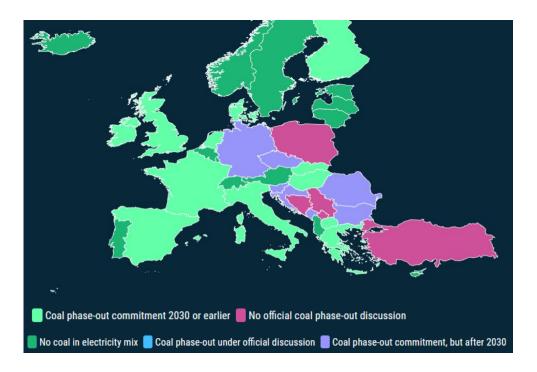
Coal to biomass conversions: status and future outlook

BIOFIT Final Policy Conference Industry session: Fossil firing power and CHP

> 18 January 2022 Manolis Karampinis, CERTH, Greece

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817999.

Coal to biomass conversions



Why biomass conversions and not co-firing?

Political will to phase-out

Directive (EU) 2018/2001 / Article 29: Sustainability and greenhouse gas emissions saving criteria for biofuels, bioliquids and biomass

21.12.2018

EN

Official Journal of the European Union

L 328/133

- 11. Electricity from biomass fuels shall be taken into account for the purposes referred to in points (a), (b) and (c) of the first subparagraph of paragraph 1 only if it meets one or more of the following requirements:
- (a) it is produced in installations with a total rated thermal input below 50 MW;
- (b) for installations with a total rated thermal input from 50 to 100 MW, it is produced applying high-efficiency cogeneration technology, or, for electricity-only installations, meeting an energy efficiency level associated with the best available techniques (BAT-AEELs) as defined in Commission Implementing Decision (EU) 2017/1442 (¹);
- (c) for installations with a total rated thermal input above 100 MW, it is produced applying high-efficiency cogeneration technology, or, for electricity-only installations, achieving an net-electrical efficiency of at least 36 %;
- (d) it is produced applying Biomass CO₂ Capture and Storage.

For the purposes of points (a), (b) and (c) of the first subparagraph of paragraph 1 of this Article, electricity-only-installations shall be taken into account only if they do not use fossil fuels as a main fuel and only if there is no cost-effective potential for the application of high-efficiency cogeneration technology according to the assessment in accordance with Article 14 of Directive 2012/27/EU.

Image Source: https://beyond-coal.eu/coal-exit-tracker/

Coal to biomass conversion benefits

For utilities:

- Utilization of otherwise stranded assets
- Generation of renewable electricity
- Financial motivation (feed-in premiums, no CO₂ cost,...)

For grid operators:

Dispatchable thermal power generation at large-scale

For society:

• Supporting local economies, especially in transition regions

Coal to biomass conversion options

Conversion aspect	Conversion retaining pulverized fuel combustion	Thermally treated biomass	Conversion into Bubbling Fluidized Bed (BFB) combustion
Boiler fuel input	Up to 1,000 MW or more	Up to 1,000 MW or more	Up to 300 MW
Main modifications required	Milling system Burner system (possibly) Biomass handling & storage	Limited	Replacement of lower furnace with fluidized bed and others
Fuel	Primarily wood pellets (due to large-scale supply issues)	Thermally treated wood pellets	Wide range of "standard' biomass feedstocks + limited co-firing of agrobiomass / waste
References	Several	1 & several demonstrations	Several

Factors to consider in a conversion

- On-site infrastructure: boiler & turbine design, space availability, fuel handling infrastructure, minimum efficiency requirements, emissions control
- <u>Fuel sourcing</u>: white pellet as standard option for large utility scale; alternative options (e.g. agropellets) as part of the fuel mixture or in post-subsidy future; local fuels for smaller conversion projects; waste derived fuels?
- <u>Logistics infrastructure</u>: port access and biomass handling capacity, land transport mode (if required)
- Health and safety aspects: dust control, fire prevention measures
- Support scheme: feed-in premium, green certificates, etc.
- Future: BECCS?

Major active wood pellet conversions in Europe

Power plant / Unit	Country	Retrofit year	Electrical Capacity (MWe)	Thermal Capacity (MWth)	Main fuels used
Västhamnsverket (Öresundskraft)	Sweden	2006	69	138	Wood pellets
Rodenhuize 4 (ENGIE)	Belgium	2011	180	-	Wood pellets
Drax 1	United Kingdom	2013	660	-	Wood pellets
Avedøre 2 (Ørsted)	Denmark	2014	394	497	Wood pellets, Straw (direct co-firing)
Drax 2	United Kingdom	2014	645	-	Wood pellets
Drax 3	United Kingdom	2015	645	-	Wood pellets
Avedøre 1 (Ørsted)	Denmark	2016	254	359	Wood pellets
Studstrup 3 (Ørsted)	Denmark	2016	362	513	Wood pellets, Straw (parallel co-firing)
Drax 4	United Kingdom	2018	645	-	Wood pellets
Lynemouth (EPH)	United Kingdom	2018	407	-	Wood pellets
Amer 9 (RWE)	Netherlands	2019	600	300	80 % wood pellets, 20 % hard coal (mass basis)
Eemshaven (RWE)	Netherlands	2019	1,560	-	Hard coal, 15 % wood pellets
Maasvlakte 3 (Uniper)	Netherlands	2019	1,110	-	69 % hard coal, 27 % wood pellets, 4 % other biomass (mass)

Source: BIOFIT Handbook: Technical options for retrofitting industries with bioenergy (2nd edition, upcoming)

- More than 81.8 GWe of coal plants to be decommissioned by 2030 according to the draft NECP probably even more now
- Conversion projects were also considered in Italy, Ireland, Greece, Spain (see <u>BIOFIT Industry Forum: Repowering coal power plants</u> with biomass)
- → Almost nothing happened since then why?

PLAYING WITH FIRE

An assessment of company plans to burn biomass in EU coal power stations

To meet their 2020 renewable energy targets, EU countries nearly doubled the amount of solid biomass used in Europe, the majority of which comes from forests, write Samuel Thomas, Dominic Scott and Dr Jan Rosenow. [Rokas Tenys / Shutterstock]

www.biofit-h2020.eu

Cost factors in conversion projects

Conversion CAPEX:

- ~ 13 €/kWe → conversion of Thunder Bay 3 to black pellets
- ~ 54 €/kWe → conversion of Drax 4 (re-use of redundant co-firing equipment)
- ~ 416 €/kWe → conversion of Drax 1-3 + supply chain infrastructure
- ~ 125 833 €/kWe → range for some other conversion projects
- → Compare with new biomass power plants: 2,500 4,500 USD/kWe
 - → Compare with new NG CCGT: ~ 390 €/kWe

Fuel / Electricity cost:

- Spot pellet prices from around 120 EUR/t (Jul 20) to 224.5 EUR/t (Dec 21), CIF NWE (Source: Argus Biomass Markets)
- Electricity production around 63.5 118.9
 €/MWh-e (assuming 40 % net efficiency)
 - → Compare with current electricity prices!
- Drax: from around 75 £/MWh-e to → 50 £/MWh-e by 2027 through fuel supply restructuring (increased self-supply, wider fuel envelope)

BIOFIT coal to biomass conversion case studies

BIOFIT Coal to biomass case studies

- Elektropriveda BiH / Tuzla 6 (223 MWe)
 - Up to 30 % (mass basis) co-firing (various local biomass fuels)
- Elektropriveda BiH / Kanakj 5 (118 MWe)
 - 100 % biomass conversion (various local biomass fuels)
- EP Produzione / Fiume Santo 4 (320 MWe)
 - 100 % biomass conversion (wood pellets, up to 5 % local wood chips)

Thank you for your attention!

Contact

Centre for Research and Technology Hellas, Greece

Manolis Karampinis

Email: karampinis@certh.gr

Website: www.certh.gr

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the European Climate, Infrastructure and Environment Executive Agency (CINEA) nor the European Commission are responsible for any use that may be made of the information contained therein.

